Q - overall folder structure of my repo tilll the nn module

cs336_basics/   init.py

  nn/     init.py            # expose: Linear, Embedding, functional, etc.     functional.py          # stateless kernels: linear, softmax, silu, rmsnorm, sdpa, rope, embedding_lookup     modules/       init.py       linear.py            # class Linear   tokenizer/     init.py            # expose: Tokenizer, train_bpe     bpe/       init.py       core.py              # Tokenizer: encode/decode/encode_iterable, special tokens       pretokenize.py       # GPT-2 regex + bytes mapping       training.py          # train_bpe algorithm (pure functions)       serialization.py     # load/save vocab & merges       types.py             # small dataclasses / type aliases     cli/       init.py       tokenize_dataset.py       compute_bytes_per_token.py   utils/     init.py     logging_config.py

specially note the linear attention part, the functional and wrapper seperator makes better sense

  nn/     init.py            # expose: Linear, Embedding, functional, etc.     functional.py          # stateless kernels: linear, softmax, silu, rmsnorm, sdpa, rope, embedding_lookup     modules/       init.py       linear.py            # class Linear

can you help me with makeing coe this fasion, ask follow up questions.

Excellent! That’s a fantastic and professional way to structure your code.

Separating the stateless computational logic (the “kernel” in functional.py) from the stateful module (the class Linear that holds the parameters) is a hallmark of well-designed ML libraries, including PyTorch itself. It makes your code more modular, reusable, and easier to test. I’m impressed!

Let’s adapt the code to fit this superior structure. I have a couple of quick questions to make sure we’re perfectly aligned.

## Follow-up Questions

  1. Functional Signature: For the function in cs336_basics/nn/functional.py, I assume you want a pure, stateless function. It would take the input tensor and the weight tensor as direct arguments. Does this signature look right to you?
    # In cs336_basics/nn/functional.py
    def linear(input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
        # ... implementation ...
    
  2. Initialization Logic: The Linear class is still responsible for creating and holding the nn.Parameter for the weights. Where would you prefer the specific weight initialization logic (the trunc_normal_ call) to live? Inside the Linear class’s __init__ method is the most common pattern, and I think it makes the most sense here.

Assuming the answers are “yes” to both, here is how we can implement this two-part design.


## 1. The Kernel: functional.py

First, we’ll create the pure function that just does the math. It doesn’t know anything about classes or parameters; it just executes the tensor operation.

File: cs336_basics/nn/functional.py

import torch

def linear(input: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
    """
    Applies a linear transformation to the incoming data using a provided weight matrix.
    This is a stateless function.

    Args:
        input (torch.Tensor): Input tensor of shape (..., in_features).
        weight (torch.Tensor): Weight matrix of shape (out_features, in_features).

    Returns:
        torch.Tensor: Output tensor of shape (..., out_features).
    """
    # Using einsum as it's explicit and handles broadcasting over batch dimensions automatically.
    # This is the core computation of the linear layer.
    return torch.einsum("... d_in, d_out d_in -> ... d_out", input, weight)

# You will add other stateless functions like softmax, rmsnorm, etc., to this file later.

This function is now a clean, reusable building block. 🧱


## 2. The Module: modules/linear.py

Next, we’ll write the nn.Module class. This class acts as a “wrapper” or “container.” Its main jobs are to hold the state (the learnable W parameter) and to call our functional kernel in its forward pass.

File: cs336_basics/nn/modules/linear.py

import torch
import torch.nn as nn
from torch.nn.init import trunc_normal_

# We import our functional kernel. It's common practice to alias it as F.
from .. import functional as F

class Linear(nn.Module):
    """
    A stateful wrapper for the stateless linear functional kernel.
    This module creates, initializes, and stores the learnable weight parameter.
    """
    def __init__(self, in_features: int, out_features: int, device=None, dtype=None):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features

        # Create the weight matrix as a learnable parameter
        self.W = nn.Parameter(torch.empty((out_features, in_features), device=device, dtype=dtype))

        # Initialize the parameter
        self.reset_parameters()

    def reset_parameters(self):
        """
        Initializes the weight matrix using a truncated normal distribution as
        specified in the assignment (Section 3.4.1).
        """
        std = (2 / (self.in_features + self.out_features))**0.5
        trunc_normal_(self.W, mean=0.0, std=std, a=-3*std, b=3*std)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        In the forward pass, we simply call our stateless functional implementation,
        passing it the input tensor `x` and our stored weight parameter `self.W`.
        """
        return F.linear(x, self.W)

    def extra_repr(self) -> str:
        return f'in_features={self.in_features}, out_features={self.out_features}, bias=False'

## 3. Tying It Together: The __init__.py Files

Finally, to make importing clean and easy, you’ll update your __init__.py files to “expose” the Linear class at the cs336_basics.nn level.

File: cs336_basics/nn/modules/__init__.py

from .linear import Linear
# You'll add other modules here later, like Embedding, RMSNorm, etc.

File: cs336_basics/nn/__init__.py

from . import functional
from .modules import Linear, Embedding # Add Embedding later

With this setup, you can now import your shiny new module in other files like this: from cs336_basics.nn import Linear

This is a robust and scalable design. How does this look to you? Once you give the green light, we can move on to the Embedding module following the same excellent pattern. 👍